医学界新聞

臨床研究・疫学研究のための因果推論レクチャー

連載 井上 浩輔,杉山 雄大,後藤 温

2021.06.07 週刊医学界新聞(通常号):第3423号より

 今回は,変数間の因果関係に関する仮説を整理して伝える上で有用なアプローチである,DAGダグ(Directed Acyclic Graph:非巡回有向グラフ)1~3)について説明します。

 解析の際にどの変数をモデルに入れるか困ったことはありませんか? DAGを用いることで,曝露がアウトカムに与える影響を評価するためにどの変数で調整すべきかを検討しやすくなります。なお,第2回に登場した「条件付け」は,統計学的に変数で調整するアプローチの一つです。

 DAGでは変数同士を矢線で結ぶことで,変数間の因果関係に関する仮説を可視化します。また,巡回した経路(X⇆Yなど)を作らないのがDAGのルールで,これにより因果の逆転が起こらないことを仮定します。

 グラフィカルモデルを用いた因果関係の検討は20世紀前半から徐々に認知されてきましたが,2000年代に入りDAGが疫学の世界で本格的に用いられるようになりました1)。DAGを扱う際の基本事項は図1をご覧ください。

3423_0601.jpg
図1 DAGを扱う際の基本事項

 ではX(曝露)からY(アウトカム)への因果効果を推定する上で,DAGがどのように役に立つのでしょうか? 図2の例から一緒に考えてみましょう。

3423_0602.jpg
図2 DAGから因果関係を考える

 例えば図2-Aのように,Xに向かう矢線を含む経路がある場合には,XからYへの因果効果を歪める可能性のあるこの経路は「バックドア経路」と呼ばれます。またこの時生じる因果効果の歪みを「交絡」,その現象の原因となる因子を「交絡因子」と呼びます。したがって,XとYの因果関係を正しく評価するには,Z1で調整してバックドア経路を閉じる必要があります。図2-B・Cの場合もX←(U1)→Z2→Y,X←Z3←(U2)→Yとバックドア経路が開いているため,それぞれZ2,Z3で調整して経路を閉じることで,XからYへの因果効果を評価します4)。ちなみに完璧なランダム化比較試験では,介入をランダムに割り付けることでDAG上においてXに向かう矢印が存在しない(=バックドア経路が存在しない)状況を作っているととらえられます。

 次に,調整すべきでない変数について考えてみましょう。XからYへの効果の一部がM(中間因子)を介在する場合は,図2-Dのように描くことができます。この場合にMで調整すると,X→M→Yの経路が閉じてしまい,XがMを介してYに与える影響を評価することができなくなります。また,図2-EのようにC1に対してX,Yの両方から矢線が向かっている場合は,X→C1←Yの経路は閉じていると判断し,この経路がXからYへの効果の推定を......

この記事はログインすると全文を読むことができます。
医学書院IDをお持ちでない方は医学書院IDを取得(無料)ください。

開く

医学書院IDの登録設定により、
更新通知をメールで受け取れます。

医学界新聞公式SNS

  • Facebook