医学界新聞

2019.10.28



第23回日本看護管理学会開催


前田樹海氏
 第23回日本看護管理学会学術集会(学術集会長=東京有明医療大・前田樹海氏)が8月23~24日,「看護管理の流儀――最適解への道程」をテーマに朱鷺メッセ(新潟市)で開催され,4000人を超える参加者が集った。本紙では,人工知能(AI)やIoT,ビッグデータを活用して医療現場の効率化を図り,医療者の負担軽減をめざす「AIホスピタル」を議論したシンポジウム「AIホスピタルによる看護業務イノベーション――看護職の働き方とマネジメントはどう変わるのか」(座長=前田氏)の模様を報告する。

AIは患者・医療者を支えるパートナー

 近年,総合病院では高齢化により増加するハイリスク重症患者への対応が求められている。その対策の一つとして,鶴嶋英夫氏(筑波大)は,入院患者の夜間の排尿や転倒・転落の予兆をウェアラブルのセンシング技術によって検知できるかを研究中だ。夜間歩行前の仰臥位での体動持続時間と離床時刻に着目した氏の検討では,15件中14件で夜間の患者行動を予測し得た。「ウェアラブルデバイスを用いた患者モニタリングは遠隔医療とも相性が良く,医療過疎地での応用にもつながる」と氏は今後の展望を述べた。

 看護分野へのAI導入によって,患者に対する「正確なリスク評価」と医療者の「効果的かつ効率的なケアの実現」が可能になると主張したのはNTT東日本関東病院看護部の中尾正寿氏。同院では国際的な医療機能評価であるJCIの認定を受けるため,認定に重要な評価指標である転倒・転落患者数の低減を目的に,FRONTEOヘルスケア社の言語解析AI「Concept Encoder」を応用した業務改善システムの開発を行っている。開発に携わったエンジニアとして中尾氏と共に登壇した同社の内山秀文氏によると,本システムの特徴はConcept Encoderを活用し過去の約52万件に及ぶ看護記録をAIに学習させ,転倒・転落が起こる可能性の高い因子を分析したことで,学習したAIが日々の看護記録の内容を解析して7日以内に転倒・転落する可能性の高い患者を導き出す点にあるという。中尾氏は精度および機能向上のため本システムのさらなる改良を継続するとしながらも,AIの将来像として「AIを活用して患者ニーズや変化を読み解くことで,より安全な医療を提供できる。AIは患者・医療者を支えるパートナーとして認識すべき」と会場に呼び掛けた。

 北原国際病院は,AI技術の医療応用を進めるNEC社と共に,診断業務やリハビリの補助,リスク管理などのさまざまなAIシステム開発に取り組む。同院で実施される数多くの研究の中で,現在最も成果を上げているのが不穏予兆検...

この記事はログインすると全文を読むことができます。
医学書院IDをお持ちでない方は医学書院IDを取得(無料)ください。

開く

医学書院IDの登録設定により、
更新通知をメールで受け取れます。

医学界新聞公式SNS

  • Facebook