EZR を用いた演習の手引き

作成日: 2025年3月1日

作成者: 原田 亜紀子

演習用データの内容

500 人(男性 160 人,女性 340 人)の健康診査の結果および生活習慣についての仮想 データ(Microsoft Excel ファイル)です。

● EZR とは

EZR は、統計解析に用いられるプログラミング言語である R の GUI 環境の 1 つである R コマンダーを、自治医科大学附属さいたま医療センターの神田善伸教授が医学統計用にカ スタマイズしたものです。

本教材は, R Version 4.2.2, R コマンダー Version 2.8-0, EZR Version 1.6.1 (Windows版) で動作確認済みです。

A EZR の導入と基本操作

① EZR のインストール

①自治医大付属埼玉医療センターのホームページにアクセスする。

https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html

②使用している OS に合わせて、セットアップファイルをダウンロードする。

③ダウンロードした「EZRsetup」をクリックし、インストールを開始する。
 ④インストール先を指定する。
 ⑤「次へ」で作業を進める。

1

② EZR の起動とデータの読み込み

①ショートカット(右図)をクリックするなどして、EZRを起動する。
 ②EZRを起動すると、2つの画面が表示される。下図左のRコンソール画面は、基本的に操作する必要はなく、下図右のRコマンダー画面を操作する。

Rコンソール画面

R コマンダー画面

③データは直接入力することも、外部ファイルを読み込む(インポートする)こともできる。 読み込み可能なデータ形式には、SPSS ファイル、Excel スプレッドシート、CSV ファイ ル、SAS データファイル、Stata データファイルなどがある。今回は、事前にダウンロー ドした「dataset_2.xlsx」を用いる。

④[ファイル]·[データのインポート]·[Excel のデータをインポート]を選択する。 ⑤データが読み込まれる。

		-		-					~	
(R R 3729-		G	evercise	(5)						
ファイル 後年 アクティブデータセット 統計解析 グラフと表 ツール	レ ヘルブ 標準メニュー		enclose	9						
新しいデータセットを作成する(直接入力) 既存のデータセットを読み込む	表示 保存 モデル: エ <779 × プモデルなし>		性別 年	ĥ歳. ;	〈タボ判定 身	₹cm.	体重kg. BMI	腹囲cm. SBP	DBP Hbg.dL	. Ht
Enor Period De Dimonitoretto 20	a constant and if the particular sector of a	1	1	43	3	169.2	66.1 23.1	87.0 161	109 16.	5 49.2
7-2012/0-5	ノアイルまたはシリッフホート、URLがらアキストテージを読み込む SPSSのデータセットキインポート	2	1	43	3	169.2	81.0 28.3	97.0 131	90 17.	1 52.0
データセットを提供する	Minitabのデータモインポート	3	1	49	3	174.5	99.0 32.5	101.5 138	85 15.	3 47.9
データセットの名前を変更する	Stataのデータモインボート	4		56	3	166.6	73.7 26.6	96.3 136	79 15.	4 46.2
2 プロデーダゼットを確定する アクティブデークセットを保定する	Lace(ジアニジをインボート	5		61	3	166.7	65.9 23.7	89.5 142	80 14.	5 45.7
2017/20/1880/		5		61	3	100.0	11.6 28.2	91.5 14/	92 10.	4 47.0
スクリプトファイル(CP932:旧Windows形式)を開く	4	6		03	5	10.7	00.0 23.0	07.0 110 07 E 199	73 14.	4 40.4
スクリプトを上巻き保存する		8		04	2	170 5	67 0 02 0	07.0 100 00 E 10E	70 14.	4 44.1
スクリプトを名約を付けて保存する		10		60	0	174.6	07.0 23.0	90.0 150	00 15	4 43.3 9 40 4
出力を上巻き保存する		11	L i .	67	50	158.8	69 0 20.0	88 5 146	84 13	9 43.4
出力を右朝を付けて保存する		12	1 i -	67	ğ	167.9	75 0 26 6	99.5 132	70 15	3 48.4
マークダウンファイルを聞く		19	l i .	67	ğ	150 0	RG 1 25 0	85 9 133	94 14	0 44.1
マークダウンファイルを上書き休存する マークダウンファイミルを必要を付けて得容する		14	L i .	68	ă	164.9	82.8 30.5	101.5 155	79 17	0 52.4
00-07/-75850F		15	1 i -	69	3	161.2	62.3 24.0	85.0 148	76 12	4 38.7
8ワークスペースを上巻き保存		16	i i	69	3	171.8	70.0 23.7	90.0 124	83 13.	7 41.9
Rワークスペースを名前を付けて保存		17	1 I	69	3	160.0	59.4 23.2	88.5 126	71 14.	8 47.7
作業フォルダーを変更する		18	1	70	3	159.5	73.0 28.7	95.3 160	95 15.	3 47.3
終了 •		19	1	72	3	155.1	57.0 23.7	86.0 136	88 14.	3 45.6
		20	1	72	3	163.4	64.1 24.0	90.5 141	76 14.	4 44.3
		21	1	74	3	164.5	65.0 24.0	89.5 131	77 13.	0 40.3
4		22	1	74	3	165.4	81.2 29.7	106.0 124	80 15.	9 45.7
メッセージ		23	1	25	2	164.9	61.8 22.7	85.0 123	77 15.	3 NA
 メモ: Rコマンダーのパージョン 2.8-0: Thu Feb メモ: R Version 4.2.2 	15 21:08:13 2024	24	1	31	2	178.5	75.2 23.6	87.0 157	109 14.	9 47.0
[3] メモ: Hello ahara		25	1	47	2	171.8	12.9 24.7	89.5 111	85 14.	U 42.8
4		26		48	2	159-1	64.8 25.6	89.0 122	/9 16.	3 NA

⑥データセットを編集する場合は[編集]をクリックする。

⑦編集画面で、変数名やデータ型、入力値の修正などが行える。たとえば変数名の変更は、 変数名をクリックすると「変数エディタ」が表示され、可能になる。

B データの種類と分布

① 度数分布表とヒストグラムの作成

a データの値の範囲を調べる(体重の集計の例)

①[統計解析]・[連続変数の解析]・[連続変数の要約]を選択する。
 ②数値の要約を行う変数(演習例では「体重」)を選択し,[OK]を選択する。

(〒R 3マンダー)		- 🗆 X	家 数値による要約
77イル 編集 アクティブデータセット 統計解析 グラフと表 ツール ヘ マークセット: □ Dataset 245次数の解析 255次の解析 255 の 255 255 の 255	ルブ 標準メニュー 連続変数の更約		」 複数の選択はCrutキーを押しながらクリック。 実数(1つ以上選択) 数 酒量…問診表。 ← 3 後の 数 酒量…
Rスクリプト Rマークダウン 生存期間の解析 Dataset <- readXL("G:/■■■ rownames=FALSE, header=TR マッチドペア解析	アイ電の使えたデババボボの-Vitubos度と) 正現性の検定(Kolmogorov-smirnov検定) 干が信め信頼区間の計算 1標本の平均値の検定		
#####達読空旅の要約1##### res <- muBummarry2(Dataset[必要サンガルサイズの計算 ・ Colhames(res\$table) <- getLexencemur+-curremessressere res	2群の等分散性の検定(F検定) 2群間の干約値の比較(検定) 対応のあ32課間の干約値の比較(paired t検定) 3群以上の骨の平均値の比較(Charlett検定) 3群以上の間の平均値の比較(一元配置分数分析one-way ANOVA)	25,.5,.75,1))	0.個利・皿工
4	対応のある2群以上の闇の十均値の比較(反復[延時]測定分散分析) 複数の因子での平均値の比較(多元配置分散分析multi-way ANOVA) 連続変数で構正した2群以上の闇の平均値の比較(共分散分析ANCOVA)	▶ (%),果行	服車2血種
> Dataset <- readXL("G:/■■大学/◎◎流望医大/■■ + rownames=FALSE, header=TRUE, na="", sheet="Sheet Hummun=Truto, as thummun="	相關係数の検定(Pearsonの積率相關係数) 線形図場(単図場、重図場) 線形混合効果モデル	A	2 分数 2 提半偏差 分数:標準備差の計算方法 ○ 工程合計:標準備差の計算方法
> mmmma總統建設(0)美子)mmmmm > res <- numSummary2(Dataset[,"体重kg."], statist > coinames(res\$table) <- gettextRcmdr(coinames(res\$	ics=c("mean", "u.sd", "u.var", "quantiles"), quantiles=c table))	(0,.25,.5,.75,1))	 ○ 介属力取(様子)構成 ○ 分散:標準備差 分位点 ▼ 分位点: 0 一 層別にて要約…
▶ res 平均 不偏標準偏差 不偏分散 0% 25% 50% 75% 10 56.4522 10.11654 102.3443 34 49.375 55 62.3	0% n 99 500		

③出力画面に要約統計が表示される。演習例では,対象数(*n*)は 500 例,平均 56.45,最 小値(0%)34,最大値(100%)99 となる。

> res 平均 不偏標準偏差 0% 25% 50% 75% 100% n 3 56.4522 10.11654 34 49.375 55 62.3 99 500

④②において, [層別して要約]→[性別...男 1...女 2]を選択したのち, [OK]を選択すると, 男女別に集計される。

> res 平均 不偏標準偏差 0% 25% 50% 75% 100% data:n 1 63.28312 9.505597 42.9 57.550 62.4 67.525 99.0 160 2 53.23765 8.711024 34.0 47.775 52.3 58.025 86.2 340

b 階級ごとに集計する

①[グラフと表]・[ヒストグラム]を選択する。

②表示する変数と群別する変数を選択し、[OK]を選択する。演習例では、それぞれ[体重]、 [性別]である。

R 2マンダー		-	R L2F054		×
ファイル 編集 アクティブデータセット 統計解析	グラフと表 ソール ヘルプ 標準メニュー 権グラフ(頻度) 円グラフ(頻度)	ティブモデルなし >	変数(1つ選択) 介入後の彼囲cm. 拡張期血圧mmHg.	群別する変数(0~1つ選択) 介入後の腹囲cm. 拡張期血圧mmHg.	
Rスクリプト Rマークダウン ######連続変数の更美行###### res <- numbsummary2(Dataset[,"体重 colnames(res\$table)<- gettextRcmdr(res ######連続変数の要好詳##### res <- NULL		ar″, ″quantiles″), quantiles≃c(0,.25,.5,.75,1))	 吸信習慣、問診表. 空旋時.曲種mg.dL. 収縮潤.血症mHg. 身長cm. 暗眠間惹なしの問題あり1. 注別	型煙習慣間診表。 空服時血循mgdL. 双補潤血圧mmHg. 身長cm. 睡眠問題なし0問題あり1. 	
res <- numbuummary2(Uatasett, 本重 quantiles=c(0,-25,-55,1) colnames(res\$table) <- gettextRcmdr(res	積ひげ回 ドットチャート 整列チャート スイマーブロット や中回	statistics-ct mean , u-so , u-var , quantiles),	半許…歳. 服薬1血圧	年齢…歳。 服薬1…血圧無0.有1. 服薬2…血樋無0.有1. 服薬3…脂質無0.有1. 服薬3…脂質	
出力 > colnames(res\$table) <- gettextRcmo > res	8011日20月7日 数市回行列 他の因子で調整した生存曲線の表示 他の因子で調整した業構発生曲線の表示 競合するイベントの累積発生率を積み重ねて表示	110. 1 400/01103 71 400/01103-0101102101101177	区間の数(群別しない場合) 詰の尺度(群別しない場合) ● 頻度 ○ パーセント ○ 密度		
平均 不備標準備差 不傷分散 0% 56.4522 10.11654 102.3443 34 45 > #####連続変数の要約#####	グラフの詳細設定 グラフの色の系統の変更 グラフの色の詳細設定		↓ 一部のサンブルだけを解析対象に3 <全ての有効なケース> 4	する場合の条件式。例: age>50 & Sex=	=0 12 age<50 Sex==1
> res <- NULL > res <- numSummary2(Dataset[,"体重 + quantiles=c(0,.25,.5,.75,1))	サンブルの背景データのサマリー表の出力 解析結果のサマリー表の出力	<pre>., statistics=c("mean", "u.sd", "u.var", "quantiles")</pre>	🔇 ヘルブ 🔸 リセット	 OK キャンセル 	🥐 適用

③ヒストグラムが表示される。

2 基本統計量の算出

①[標準メニュー]・[統計量]・[要約]・[数値による要約]を選択する。

🕞 R אַעדר R ראַעד-					-		×
ファイル 編集 アクティブデータセット 統計解析 グラフと表 ツール ヘルプ マー データセット: TDataset 編集 表示 保R RZグリプト Rマークダウン	標準メニュー ファイル 編集 データ	X <アクティブモデルなし>					
Dataset <- raadXL("G:/ # # 大学/@@送說医大/# 研究M: rommamesfHLG, header=TRUE, na=", sheet="Sheet1", st library(e1071, pos=18) library(e1071, pos=19)	続計量 グラフ モデル 分布 ツール ヘルプ		• • • •	アクライブニクセット 気(())になった。 教())の()) ())の()) ())の()) ()) ()) ())			*
当力 Dataset <- readXL("G:/■■大学/③●道賀医大/■通究的 + romames=FALSE, header=TRUE, ns=", sheet="Sheet1", s ibrary(abind, pos=18) ibrary(e1071, pos=19)	ीख⁄∎∎宮र tringsAsFac	公先生_教科書/dataset tors=TRUE)	.xlsx			🕵 実行	

②出力する変数と統計量を選択する。統計量については、平均、標準偏差、標準誤差,四分 位範囲、変動係数,分位数などが選択できる。

R R コマンダー			
ファイル 編集 アクティブデータセット 統計解析 グラフと表 ツール ヘルブ	標準メニュー		
教値による要約	× ル: Z <アクティブモデルなし>	(R 数値による要約)	×
		デ-9 統計量	
7-9 統計量 変数(1つ以上選択) 睡眠,問題ないの問題あり1. 性別…男1女2. 事で語問い.mg.dL 年終意 服軍1血圧	讼先生_数科書/dataset.xl: :tors=TRUE)	 2 平均 2 平均 2 平均の標準誤差 2 四分位載囲 2 変動係数 2 預度 9 タイブ1 2 火度 9 イブ2 9 イブ3 ジ 分位数: 0.25, 5, 75, 1 	
🍄 ЛЛЛ 🤚 УЕУР ✔ ОК 💥 ФУУЕЛ 🌈	通用 Arev 宮松先生 数科書/dataset.	(Q) ∧ √) Utop	. (*** 適用

③結果が出力される。下図の mean は平均, sd は標準偏差, IQR は四分位範囲である。

> numSummary(exercise[,"体重...kg.", drop=FALSE], stati mean sd IQR 0% 25% 50% 75% 100% n 56.4522 10.11654 12.925 34 49.375 55 62.3 99 500

C関連の指標

1 散布図の描画

①[グラフと表]-[散布図]を選択する。

②X と Y の変数を指定し、[OK]をクリックする。今回は、「腹囲」と「収縮期血圧」を指定 する。

R R 3729-			- 0 ×	(R 数布回)		×
ファイル 編集 アクティブデータセット 統計解析	グラフと表 ノール ヘルブ 標準メニュー			× 変数 (1つ選択) j	変数(1つ選択)	
R 7-91171: Dataset (18)	後クラノ(損度) 円グラフ(頻度)	ティブモデルなしゝ		中性脂肪mg.dL. 年前	g煙習慣問診表。 B 酸時立徳ng.dt. R編載自任mmHo.	
スクリプト Rマークダウン	幹業表示			股軍2直播無0.有1.		
binnedCounts(Dataset[,"体重kg.", wmSummary(Dataset[,"体重kg.", dr	ヒストグラム	e(mean)", "IOP", "quantiles", "cv", "skewness",		很困cm.	188	
"kurtosis"), quantiles=c(0,-25,-5,	(42)13)F 種グラフ(平均値)			Options	ブロットするパラメータ	
numSunmary(Dataset[,体重kg., dr	折れ線グラフ(平均値)	e(mean)", "IOR", "quantiles", "cv", "skewness",		■ 点を確認する	プロットする記号	auto>
"kurtosis"), quantiles=c(0,-25,-5, pinnedCounts(Dataset[,"体重kg.", pnorm(c(55), mean=56_45, sd=10.12, 1	反復測定データの折れ線グラフ 種ひげ回			 ×の値にゆらぎを与えて表示 yの値にゆらぎを与えて表示 	点の大きさ	1.0
>norm(c(62.3), mean=56.45, sd=10.12,	F9FF#-F (1)			 ×	軸テキストの大きさ	1.0
4	藍列チャート		P	 y 軸を対数軸に 		10
	スイマーブロット			🔽 周辺箱ひげ図	触ラベルのテキストの大きさ	
出力	飲布図		(1) 実行	☑ 最小2 東直線		
(45, 50] 82 16.4	數卷圖行列			□ 平滑線		
(50, 55) 117 23.4 (55, 60) 84 16.8 (60, 65) 86 17.2 (65, 70) 29 5.8	他の因子で調整した生存曲線の表示 他の因子で調整した業種発生曲線の表示 戦合するイベントの業種発生高を極み重ねて表示			し はらうさ幅の表示 スムージングの幅	50	
(70, 75) 21 4.2 (75, 80] 15 3.0	/12301#1510#			× 鼬のラベル	y 軸のラベル	
(80, 85) 10 2.0	グラフの色の系統の変更			<auto></auto>	<auto></auto>	
(90, 95) 1 0.2	グラフの色の詳細設定			」一部のサンプルだけを解析すまた。	(2場金の条件式、例: age>50 & Sex==0 や。	age<501 Sex==1
Total 500 100.0	サンゴーのな果データのサフリーまの出た	-		<全ての有効なケース>		
	サラブルの音楽デーラのサマリー表のエフ」 解析線集のサマリー表の出力			4	-	P
<pre>> pnorm(c(55), mean=56.45, sd=10.12; [1] 0.4430343</pre>	-10861(811-1806)	1		層別のブロット…	2	
> pnorm(c(62.3), mean=56.45, sd=10.1 [1] 0.7183893	2, lower.tail=TRUE)			1 117 ST 1275	✓ OK ★+*ンセル ●	透用
4						

③散布図が出力される。

② 相関の分析

①[統計解析]-[連続変数の解析]-[相関係数の検定(Pearsonの積率相関係数)]を選択する。
 ②相関を分析したい2変数を選択し、[OK]をクリックする。今回は、「収縮期血圧」と「腹囲」を指定する。

(R R 37)//-		(R 相関係数の検定(Pearsonの模率相関係数)	×
アナパト 編集 アラティグラ・クセット (民日報行:) アラノを アート ヘノ マ データセット: TO Masset R2/07/F Rマークダウン アバラスセンクトリア NunGGumary (Dataset [, 「修査:: 生井尾和の柄子・ NundGumary (Dataset [, 「修査:: マッチドペア病析・		 (資本の規則ない4-E押しながらクリック、 変数(2つ違称) (介) 秋心の漫画… (介) 秋心の漫画… (竹) 秋心の漫画… (可) (行) 九道 (可) (行) 九道 (可) (行) 九道 (可) (前) 先の通 (可) (前) 先の通 (可) (前) 先の通 (可) (前) 先の通 (可) (前) 先の一 (可) (前) (前) (前) (前) (前) (前) (前) (前) (前) (前	
proprie (cg2,2), sear55,4,5 windows (width-T, height=T): wertwert, users, regline databatast), angamig. 随田ca., regline databatast)	2回6年後往り後至(後至) 2書簡の干り違の比較(地面) 1万である22種的の中国の)と取[pained 地面) 3罪以上の間の予約増加(地面) 3罪以上の間の予約増加(地面)と取(反復(道明))思分 松分析) 対応のある2章以上の間の干均違の比較(反復(道明))思分 松分析 対策のある2章以上の間の干均違の比較(大変)出来の分析(ANCVA) 温度変変で第二となったりましたの間の予約回した形(大分化分析(ANCVA)	(世別)、男に次之 (世里)の、mg.dL (神田)の、mg.dL (神田)、二二二二二年の有1. (神田)、二二二二年の有1. (神田)、海田、二年の有1. (神田)、海田、二年の有1. (神田)、二日二二年の有1. (神田)、二日二二年の有1. (神田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (中田)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の有1. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)、二日二二年の月. (日二)(日二)(日二)(日二)(日二)(日二)(日二)(日二)(日二)(日二)	
(80.65) 10 2.0 (55.90) 2 0.4 (90.95) 1 0.2 Total 500 100.0 > porma(c(55), teono.156.45, sd=10.12, lower.tail=TRUE) [1] 0.443943 > porma(c(62,3), mean=56.45, sd=10.12, lower.tail=TRUE)	相関体系の特定(Peansonの検索相関体系) 第四回制度加制、東面制 線形混合効果モデル E)	● 相関 < 0 ● 相関 < 0 1 - 部のサンプルだた解析対象にする場合の品件式。例: ager 50 & Seren 0 や ager 50 j & < 全ての有効なケース・ ④ ④ ④ ▲ ● ● ● ● ● ● ● ● ● ● ● ● ●	x==1

③結果が出力される。

■参考 スピアマンの順位相関係数

対象とする変数が正規分布していない場合は,ノンパラメトリックな手法であるスピアマンの相関係数による分析を行う。

①[統計解析]-[ノンパラメトリック検定]-[相関係数の検定(Spearman の順位相関係数)]を 選択する。

②相関を分析したい2変数を選択し、[OK]をクリックすると、結果が出力される。

🕞 R בעער R		0
ファイル 編集 アクティブデータセット 統計	計解析 グラフと表 ツール ヘルプ 標準メニュー	 C
😱 データセット: 🔲 Dataset	名義変数の解析 連続変数の解析 保存 モデル: 区 <アクティブモデルなし>	> (res <-
Rスクリプト RT-クタウン ######W 布 [2]##### windows (width-7, height=7); scatterpic (UR�.min_Ef dataDataset) #########KRAWR (Pearson windows (width-7, height=7); scatterpic (UR�.min_Ef res <- corlest (Ugataset #UR&#M cat (gattextRoadr correlation signif(resconf.int[1],digit: digit=3), , sep=</td><td>27月5次5月97後定 27月20日 主存務局の時所 対応のあ23種物の比較(Winkcown号付損償的物度定) 考部以上の層の比較(Kinkal-Wallis集定) マラドな7時所 対応のあ33年以上の層の比較(Kinkal-mak定) マラドな7時所 対応のあ33年以上の層の比較(Kinkal-mak定) のすうだな7時所 可応あ33年以上の間の比較(Kinkal-mak定) のすうだな7時所 可のあ33年以上の間の比較(Kinkal-mak定) のすうだな7時所 可のような3年以上の間の比較(Kinkal-mak定) のすうだな7時では、 のすうだな7時では、 のすうです。 のすうでは、 のすうでは、 のすうでは、 のすうでは、 のすうでは、 のすうでは、 のすうでは、 のすうです。 のすっです。 のするです。</td><td>data: ex data: ex S = 14587 alternati sample es rho D.2997907 > cat (get + ~) SpearmanC</td></tr></tbody></table>		

$\langle \mathcal{Q} \rangle$
>(res <- cor.test(exercise\$SBP, exercise\$腹囲cm
Spearman's rank correlation rho
data: exercise\$SBP and exercise\$腹囲cm. S = 14587635, p-value = 7.658e-12 alternative hypothesis: true rho is not equal to O sample estimates: rho D.2997907
> cat(gettextRcmdr(~Spearman's rank correlation co + signif(res\$p.value, digits=3), + ~) Spearmanの順位相関係数 0.3 P値 = 7.66e-12

③ 回帰分析

①[統計解析]・[連続変数の解析]・[線形回帰(単回帰、重回帰)]を選択する。 ②目的変数と説明変数を選択し,[OK]をクリックする。今回は「収縮期血圧」と「腹囲」

を選択する。

(R R 77)//-	(
RAUDY 展車 797(ガー9セット 肥料車 797(カータセット 低車 マーク・シーク・シーク・シーク・シーク・シーク・シーク・シーク・シーク・シーク・シ	モデル名を入力: RegModel.1 複数の違規にないキモ環境ながらワリウム: 目的支数(1つ違保) 数置量、現計素。 か入後の)数置上でm。 対象の置置にでのため、 か入後の)数置上でm。 単位置像、用計表。 単位置像、用計表。 単位置像、用計表。 単位置像、用計表。 の確果、単位、一部内、 の確果、単位、一部内、 の確果、単位、一部内、 のであり、のであり、 のであり、のであり、 のであり、のであり、 のであり、のであり、 のであり、のであり、 のであり、のであり、 のであり、のであり、 ののであり、 のであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののであり、 ののでのであり、 ののでのであり、 ののでのののでのであり、 ののでのののでのののでののでのののでののでののでのののでののののののでのののでのののでのののの
	回該該当 日日 回転 回面 回面 回面 回面 回面 回面 回面 回面 Ima Ima </td
▷ (res <- cor.test(Dataset\$4以隨時血) 王mmHg., Dataset\$120cm., alternative="two.sided", method="spearman"))	

③結果が出力される。

- > multireg.table <- NULL
- > multireg.table <- cbind(res\$coefficients[,1], confint(RegModel.1),res\$coefficients[,2:4])
 > colnames(multireg.table)[1] <- "Estimate"
 > colnames(multireg.table) <- gettextRcmdr(colnames(multireg.table)) ③
 > multireg.table
 回帰係数推定値 95%信頼区間下限 95%信頼区間上限 標準誤差 t統計量 P値
 (Intercept) 78.1970375 64.7263390 91.6677360 6.85622805 11.40526 6.253862e-27
 度田...cm. 0.5968214 0.4327161 0.7609267 0.08352526 7.14540 3.207820e-12

D 統計分析

独立性の検定(χ²検定)

①[統計解析]-[名義変数の解析]-[分割表の作成と群間の比率の比較]を選択する。

②行・列の変数と検定の種類を選択する。今回は「性別」と「睡眠問題」について選択し、 カイ2乗検定を行う。

③結果が出力される。

(R R Jマンダ−		 (森分割表の作成と群間の比率の比較(Fisherの正確検定) ×
ファイル 編集 アクティブデータセット (統計解析) グラフと表 ツール / (マ データセット: □ Dataset) タブロ(ブ p. p. p.do.) ノブ(ブメトリック)検索 ノンパンドカック	ルプ 標準メニュー 類度分布 比率の信頼区間の計算 1標本の比率の検定	1. 株式の当時にない年上期におかりかり、 作の当時についまます。 第二、市 計画電気の発展し、 第二、市 計画電気の発展し、 第二、市 計画電気の発展し、 第二、市 計画電気の発展し、 第二、市 計画電気の発展し、 第二、市 計画電気の発展し、 作う、38.5.1 新品にの 中自動にの内点、 単常素の見一の時点、 等電気の発展し、 第二、市 計画電気の 第二、市 計画 第二、市 計画 (注意) 第二、市 計画 (注意) (注 (注) (注) (注) (注) (注) (注) (注)
cal (gettextRrudr ("Spearman signif(res\$p.value, digit #####線和回燈(単回燈,重回外 以方が10月間) RegModel.1 <- 1m(収縮期血 を要サンプルサイズの計算	2群の比率の差の重積区間の計算 2群の比率の比の僅積区間の計算 分割表の直接入力と解析 分割表の構成社計画の比率の比較(Ficherの正理技巧) 対応のある比率の比較(分割表の対称性の構定、McNemar検定)	
<pre>(res <- summary(RegModel.1)) multireg.table <- NULL multireg.table <- cbind(res\$coefficients[,1], confin</pre>	対応のある3群以上の比率の比較(Cochran Q検定) 比率の傾向の検定(Cochran-Armitage検定)	防(2乗収計量の要問 た) た(2乗収計量の要問 た) た(2乗収計量の要問 た) ア(2乗収計量の要問 マ) マ マ)
coinames(multireg.table) <- gettextRcmdr(coinames(m multireg.table) <- gettextRcmdr(coinames(m multireg.table	」 二値変数に対する多変量解析(10ジスティック回帰) 順序変数に対する多変量解析(1順序ロジスティック回帰) 多項ロジスティック回帰	

■ 参考

クロス集計表が手元にある場合は、以下の方法で独立性の検定が可能である。 ①[統計解析]・[名義変数の解析]・[分割表の直接入力と解析]を選択する。 ②行数と列数を選択し、それぞれのセルに値を入力し、検定の種類を選択する。 ③結果が出力される。

対応のある場合の t 検定

①[統計解析]-[連続変数の解析]-[対応のある群間の平均値の比較(paired t 検定)] ②2 変数を選択し、検定を行う。今回は「腹囲」と「介入後の腹囲」を指定する。なお、 「介入後の腹囲」は「メタボ判定」が 3 の人のみに存在する変数なので、条件式に「メタ ボ判定==3」と入力することで対象を絞り込んでいる。

(ℝ R] マンダ−		R 対応のある2群間の平均値の比較(paired t検定)	×	
ファイル 編集 アクティブデータセット 統計解析 グラフと表 ツール	いルプ 標準メニュー	第10変数(1つ選択) 第20変数(1つ選択)		
正確認識 正確認識 <th 100000000000000000000000000000000000<="" =="" td=""><td>建設変数の要約 外れ値の検定(Arimov-Grubbs検定) 正現住の検定(Kolinogrov-sminov検定) 平均値の種類短期の計算 1種本の平均値の計算</td><td>7) 7(20) 4回二/ml, は電源:-目二-mmHg, りつア.5/2)-mg-dl, 大が不利定:-3(1)-74, #2)-5 空間称:-目生-mmHg, 以の利益:-日二-mmHg, 料石(二)、 料石(二)、 大が不利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 火が利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 (1)-74, #2)-5</td><td></td></th>	<td>建設変数の要約 外れ値の検定(Arimov-Grubbs検定) 正現住の検定(Kolinogrov-sminov検定) 平均値の種類短期の計算 1種本の平均値の計算</td> <td>7) 7(20) 4回二/ml, は電源:-目二-mmHg, りつア.5/2)-mg-dl, 大が不利定:-3(1)-74, #2)-5 空間称:-目生-mmHg, 以の利益:-日二-mmHg, 料石(二)、 料石(二)、 大が不利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 火が利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 (1)-74, #2)-5</td> <td></td>	建設変数の要約 外れ値の検定(Arimov-Grubbs検定) 正現住の検定(Kolinogrov-sminov検定) 平均値の種類短期の計算 1種本の平均値の計算	7) 7(20) 4回二/ml, は電源:-目二-mmHg, りつア.5/2)-mg-dl, 大が不利定:-3(1)-74, #2)-5 空間称:-目生-mmHg, 以の利益:-日二-mmHg, 料石(二)、 料石(二)、 大が不利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 火が利定:-3(1)-74, #2)-5 火が不利定:-3(1)-74, #2)-5 (1)-74, #2)-5	
res (- fisher.test (.Table) summary.table (- NULL summary.table (- data.frame summary.table\$p.value[2:ienzwrv+worep:rj. colnames(summary.table[ienzh(.Table[1,])+1] (- get	2群の等分数性の検定(F検定) 2群間の平均値の比較(検定) 対応の済み2年間の平均値の比較(検定)	年時、意 開薬1.血圧冊の有1. 開業2.血圧冊の有1. 開業2.血圧冊の有1. 開業2.血圧冊の有1. 開業2.血圧冊の有1. 開業2.血圧冊の有1. 開業2.血圧冊の有1. 開業1皮2. 同型		
summary.table	3群以上の导分散性の模定(Bartlett模定)	●両側		
4 ##	3時以上の間の干均値の比較(一方能進分数分析one-way ANOVA) 対応のある2群以上の間の平均値の比較(反復(経時)測定分数分析) 複数の因子での平均値の比較(多元配置分数分析multi-way ANOVA)	○ 差 < 0 ○ 差 > 0 信顿水準 0.95	2	
sample estimates:	連続変数で補正した2群以上の間の平均値の比較(共分散分析ANCOVA)	↓ 一部のサンプルだけを解析対象にする場合の条件式。例: age>50 &	Sex==0 や age<50 Sex==1	
odds ratio 0.7023623	相關係数の検定(Pearsonの模率相關係数) 線形回帰(単回帰、重回帰) 線形混合効果モデル	ヘクパサインビュニコ での ヘルブ う リセット マ OK 業キャンセノ	ル (
res <- fisher.test(.Table)				

③結果が出力される。

- > mean2 <- mean(exercise\$介入後の..腹囲...cm., na.rm=TRUE)
- > sd1 <- sd(exercise\$腹囲...cm., na.rm=TRUE)</pre>
- > sd2 <- sd(exercise\$介入後の..腹囲...cm., na.rm=TRUE)
- > summary.ttest <- NULL</pre>
- > summary.ttest <- data.frame(mean=c(mean1, mean2), sd=c(sd1, sd2), p.value=c(sign
- > rownames(summary.ttest) <- c("腹囲...cm.", "介入後の..腹囲...cm.")
- > colnames(summary.ttest) <- gettextRcmdr(colnames(summary.ttest))</pre>
- > summary.ttest

平均 標準偏差 P値 腹囲...cm. 81.55700 9.310686 0.000000253 ③ 介入後の..腹囲...cm. 92.54717 6.169298

③ 等分散性の検定

①[統計解析]-[連続変数の解析]-[2 群の等分散性の検定(F検定)]を選択する。

②目的変数と、グループを分ける変数を指定する。ここでは、「γ-GTP」と「喫煙習慣」を 指定する。

③結果が出力される。

77・/ル 編集 アクティブテークセット デークセット: □ Dataset R2/リプト Rマークダウン group.naeas <- c (group.naea group.naeas (- c (group.naea group.naeas, (- c (group.naea yークKYZ)#が	ブ 標率メニュー 	日安友和11-22年) ATL-070-1-041 ATL-070-1-041 ATL-070-1-041 ATL-070-1-041 ATL-070-1-041 ATL-070-1-04 ATL-070-1-
group.p. <- Claroup.p. / summary.tlest <- NUL summary.tlest <- NuL romaaes(summary.tlest) <- grupp=romaaes(summary.tlest) colnaaes(summary.tlest) <- gettextRcmdr(colnames(sum summary.tlest)	2群の等分配性の装定(1検定) 2課間の中均値の比較(1検定) 対応のある2課間の平均値の比較(paired 1検定) 算以上の等分散性の検定(Barlett検定) 3算以上の間の平均値の比較(一元配置分数分析one-way ANOVA) 3算以上の間の平均値の比較(一元配置分数分析one-way ANOVA)	クジオ12
出力	対応のある2群以上の間の中均値の比較(反復(維持)測定分散分析) 複数の因子での平均値の比較(多元配置分散分析multi-way ANOVA) 連続変数で補正した2群以上の間の平均値の比較(共分散分析ANCOVA)	○ 臺 <0 ○ 臺 >0 信頼水準: 0.95
<pre>> group.means <- c(group.means, bar.means[2]) > group.sds <- c(group.sds, bar.sds[2]) > group.p <- c(group.p, "")</pre>	相關係数の検定(Pearsonの攝率相關係数) 線形回嘴(単回爆) 線形混合効果モデル	1. ■ BOLY JUNCIE MY 11 (81-3 VM BOLY HTML 19) 39(5-30 (4) Set=11 住気=1 4 (○) ALD (○) リゼット (◇ OK) (*+12/21) (◇ ALD) (○) リゼット (◇ OK) (*+12/21)

④ 分散が等しい場合の t 検定

①[統計解析]-[2群間の平均値の比較(t検定)]を選択する。

②目的変数と比較する群を分ける変数を指定し、「等分散と仮定しますか?」で「はい」を 選択する。今回は、変数に「γ-GTP」と「喫煙習慣」を指定する

③結果が出力される。

(R R Jマンダー	R 2群間の平均値の比較(t検定) ×
ファイル 編集 アクティグデータセット 統計解析 グラフと表 ソール ヘルプ 標準メニュー マ ダークセット: ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	複数の選択はCrifキ-を押しながらクリック。 目的変数(1つ選択) AUT.GPT.LULL AUT.GP
meanl <- meanl (subset (lutass meanl <- mean (subset (lutass stal <- of subset (lutass) 242 <- sof (subset (lutass) 242 <- sof (subset (lutass) 240 = 5 主符期間の解析 推測の正確度の評価 240 = 5 正規生の検定(kolmogorov-smimov(検定) 平均値の確認していたい) 240 = 5 subset (lutass) 242 <- sof (subset (lutass) 240 = 5 アナドV河解析 240 = 5 正標本の特遣の検定 240 = 5 subset (lutass) 240 = 5 メクナドV河和 240 = 5 アナドV河和 240 = 5 ormanes (subset (lutass) 240 = 5 アナドV河和 240 = 5 ormanes (subset (lutass) 240 = 5 アナドV河和 240 = 5	NDK (LarVOS)
colnames(summary-ttest) <- gettextRcmdr(colnames(sum summary-ttest) 3割以上の等分散性の地変(Bantet検定) 3割以上の等分散性の)数での最近の数分形のne-way ANOVA) 対応のある2線以上の闇の干均値の比較(天電道会数分形のne-way ANOVA) 対応のある2線以上の闇の干均値の比較(天電道会数分析multi-way ANOVA) 違志要素で確正比定率以上の闇の干均値の比較(天電音会数分析multi-way ANOVA) 違志要素で確正比定率以上の闇の干均値の比較(天気電合分析multi-way ANOVA)	
> mean1 <- mean(subset(Dataset,メタボ判定==3)な親田 > mean2 <- mean(subset(Dataset,メタボ判定==3)な入社 #形回用(単回用、重回用) > mean2 <- mean(subset(Dataset,メタボ判定==3)な入社 #形形用用(単回用、重回用)	(世別=1 (世別=1) (● 0K) (● 100×10×10×10×10×10×10×10×10×10×10×10×10×

⑤ 分散が等しくない場合の t 検定(ウェルチの t 検定)

「④分散が等しい場合の *t* 検定」の, ②において「等分散と仮定しますか?」を「いいえ」にすると, ウェルチの *t* 検定を行うことができる。